inorganic nutrients

Stream networks are intimately connected to the landscapes through which they flow and significantly transform nutrients and organic matter that are in transport from landscapes to oceans. This work will quantify the relative influences of throughflow, lateral inputs, and hyporheic (a layer of surface sediments that contains water which exchanges continuously with water in the open channel) regeneration on the seasonal fluxes of C, N, and P in an arctic river network, and determine how these influences will shift under seasonal conditions that are likely to be substantially different in the future. This objective is a logical extension of earlier. This work will focus on seasonal dynamics at different river reach scales (1st to 4th order streams) and will lay the groundwork for a whole river network model to integrate the influences of throughflow, lateral inputs, hyporheic regeneration, and in-stream metabolism on C, N, and P fluxes through an entire river network.
For more information see project's web site:  Changing Seasonality and Arctic Stream Networks

Changing Seasonality and Arctic Stream Networks
Title Abstract
CSASN Channel Nutrients from 2010 to 2012 in I8 Inlet, I8 Outlet, Peat Inlet and Kuparuk Rivers
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. During the project, background samples were collected from four stream channels and analyzed... more
CSASN Nutients: Tracer addition for spiraling curve characterization from 2010 to 2012
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. There were a number of TASCC and Plateau nutrient additions at each sampling location. The... more
Nutrient and tracer amounts for Tracer Additions for Spiraling Curve Characterization studies on arctic streams near Toolik Field Station, Alaska 2010 -2012.
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. There were a number of tracer addition for spiraling curve characterization (TASCC) and... more
CSASN Well and Mini-piezomenter Samples
The Changing Seasonality of Arctic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of through flow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. During the project, well and mini-piezometer samples were collected from various depths... more
CSASN TASCC Nutrient additions to streams near Toolik Field Sation, Alaska 2010 to 2012
The Changing Seasonality of Artic Stream Systems (CSASN) was active from 2010 to 2012. The CSASN goal was to quantify the relative influences of throughflow, lateral inputs, and hyporheic regeneration on the seasonal fluxes C, N, and P in an arctic river network, and to determine how these influences might shift under seasonal conditions that are likely to be substantially different in the future. There were a number of TASCC and Plateau nutrient additions at each sampling location. The... more
Ecotypes Transplant Garden
Title Abstract
Absorbed soil nutrients on ion exchange membranes in the reciprocal transplant gardens at Toolik Lake, Coldfoot, and Sagwon in 2016
Transplant gardens at Toolik Lake and Sagwon were established in 2014.  At each location, 60 tussocks each from ecotypes of Eriophorum vaginatum from Coldfoot (CF, 67°15′32″N, 150°10′12″W), Toolik Lake (TL, 68°37′44″N, 149°35′0″W), and Sagwon (SG, 69°25′26″N, 148°42′49″W) were transplanted. At the reciprocal transplant gardens, ion exchange membranes were used to measure nutrient availability over two time periods: Early season (June) and mid season (July). Membranes were deployed in the... more
Terrestrial Biomass
Title Abstract
Relative percent cover was measured for plant species on Arctic LTER experimental plots in moist acidic and non-acidic tundra, Arctic LTER Toolik Field Station, Alaska 2013.
Relative percent cover was measured for plant species on Arctic LTER experimental plots at Toolik field station in moist acidic and non-acidic tundra. 
Above ground plant and below ground stem biomass in the Arctic LTER moist acidic tussock tundra experimental plots, 2006, Toolik Lake, Alaska
Above ground plant and below ground stem biomass, percent nitrogen, and percent carbon were measured in the Arctic LTER moist acidic tundra experimental plots. Treatments included control, and nitrogen and phosphorus amended plots for 10 years, and exclosure plots with and without added nitrogen and phosphorus.
Above ground plant and below ground stem biomass in the Arctic LTER dry heath tundra experimental plots, 2006, Toolik Lake, Alaska
Above ground plant and below ground stem biomass, percent nitrogen, and percent carbon were measured in the Arctic LTER dry heath tundra experimental plots. Treatments included control, and nitrogen and phosphorus amended plots for 10 years, and exclosure plots with and without added nitrogen and phosphorus.
Bulk concentration and isotopic information of plant C and N in green leaves and tissues collected from Imnavait watershed during 2003-2005
Changes in total C and N, d13C and d15N, C:N ratio in green leaves and parts of mosses (for sphagnum, both red and green tips were included) over time since 15NH4 addition in Imnavait watershed.
Above ground plant and below ground stem biomass in the Arctic LTER acidic tussock tundra experimental plots, 2002, Toolik Lake, Alaska.
Above ground plant and below ground stem biomass was measured in the Arctic LTER acidic tussock tundra experimental plots. Treatments included control, nitrogen plus phosphorus amended plots for either 6 or 13 years and vole exclosure plots with or without amends of nitrogen and phosphorus.
Above ground plant and belowground stem biomass in moist acidic and non-acidic tussock tundra experimental sites, 2001, Arctic LTER, Toolik Lake, Alaska.
Above ground plant and belowground stem biomass was measured in moist acidic and non-acidic tussock tundra experimental sites. Treatments sampled were control plots and plots amended with nitrogen and phosphorus.
Biomass, nitrogen and carbon of plants in the Arctic LTER experimental wet sedge tundra experimental sites, 2001, Toolik Lake, Alaska.
Biomass, nitrogen and carbon of plants in the Arctic LTER experimental wet sedge tundra experimental sites, 2001, Toolik Lake, Alaska.. Treatments at each site included factorial NxP, greenhouse and shade house and were begun in 1985 (Sag site) or in 1988 (Toolik sites).
Above ground plant biomass in a mesic acidic tussock tundra experimental site 2000, Arctic LTER, Toolik Lake, Alaska.
Above ground plant biomass and leaf area were measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen summaries for control and fertilized plots. Leaf area data is in 2000gsttLA
Aboveground plant and belowground stem biomass were measured in moist acidic and moist non-acidic tussock tundra experimental plots, Toolik Field Station, Alaska, Arctic LTER 2000.
Aboveground plant and belowground stem biomass were measured in moist acidic and moist non-acidic tussock tundra experimental plots. Treatments at the acidic site include control and nitrogen (N) plus phosphorus (P) amendments; treatments at the non-acidic site include N, P, N+P, greenhouse warming, and greenhouse+N+P.
Note:  Version 8 corrected an error where Carex vaginata was listed twice under treatment of "Nitrogen Phosphorus".  The tissues with 8 quadrats were "Greenhouse"  treatment.
Leaf area for select species was measured in arctic tundra experimental sites from late June into early August,Toolik Field Sattion, Alaska, Arctic LTER 2000.
Leaf area for select species was measured in arctic tundra experimental sites from late June into early August. Measurements were made in acidic and non acidic tussock tundra and in shrub tundra in control and fertilized plots.
Above ground plant biomass in a mesic acidic tussock tundra experimental site from 1982 to 2000 Arctic LTER, Toolik Lake, Alaska.
Above ground plant biomass and leaf area were measured in a moist acidic tussock tundra experimental site. The plots were set up in 1981 and have been harvested in periodical (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31. Mack, et al, Nature 2004 431:440-443) This file contains the biomass numbers for each harvested quadrat and per cent carbon and nitrogen summaries for harvests through 2000. Leaf area data is presented in other data files (see http://ecosystems.mbl.... more
Percent carbon, percent nitrogen, del13C and del15N of above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra, 2000, Arctic LTER, Toolik Lake, Alaska.
Percent carbon, percent nitrogen, del13C and del15N were measured from above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra. Biomass data are in 2000lgshttbm.dat.
Foliar and litter nutrients and retranslocation efficiencies (N, P, K, Ca, Mg, Al) for dominant species on moist acidic and non-acidic tundra, Arctic LTER, Toolik Field Station , Alaska, 1999.
Foliar and litter nutrients and retranslocation efficiencies (N, P, K, Ca, Mg) for dominant species on moist acidic and non-acidic tundra, Arctic LTER, Toolik Field Station , Alaska, 1999.
Plant biomass in moist acidic tussock tundra experimental small mammal exclosures, 1999 Arctic LTER Toolik, Alaska.
Above ground plant and below ground stem biomass was measured in Arctic LTER tussock tundra experimental small mammal exclosures. Treatments included Control, Nitrogen plus Phosphorus with both fenced and unfenced plots. In addition a moist non-acidic tussock tundra site was harvested. Leaf areas were also measured for each quadrat but are in a separate file.
Plant leaf area in Arctic LTER tussock tundra experimental small mammal exclosures.
Leaf areas were measured on quadrats harvested in Arctic LTER tussock tundra experimental small mammal exclosures. Treatments included Control, Nitrogen plus Phosphorus with both fenced and unfenced plots. In addition a moist non-acidic tussock tundra site was harvested. Biomass was also measured for each quadrat but is in a separate file.
Foliar nutrients (N, P, K, Ca, Mg, Al) for dominant species on moist acidic and non-acidic tundra, Arctic LTER, Toolik Field Station , Alaska, 1999.
Foliar nutrients (N, P, K, Ca, Mg, Al) for dominant species on moist acidic and non-acidic tundra, Arctic LTER, Toolik Field Station , Alaska, 1999.
Measurements of Leaf area, foliar C and N for 14 sites along a transect down the Kuparuk River basin, summer 1997, North Slope, Alaska.
1997 measurements of Leaf area, foliar C and N for 14 sites along a transect down the Kuparuk River basin, North Slope, Alaska.
Plant biomass in heath tundra experimental plots, 1996, Arctic LTER, Toolik Lake, Alaska.
Plant biomass in arctic heath experimental plots. Plots set up in 1989 with nitrogen, phosphorus, nitrogen plus phosphorus and a shade treatment were harvested for above ground biomass. Root mass was also measured on a smaller subsample.
Weights and lengths from retrospective growth analysis of different stem age classes of Betula nana, 1995, Arctic LTER, Toolik Lake, Alaska.
This data file contains the data on weights and lengths from retrospective growth analysis of different stem age classes of Betula nana ramets from the LTER Nutrient and Warming manipulations in tussock tundra at Toolik Lake.
Above ground plant biomass and leaf area of moist acidic tussock tundra 1981 experimental site, Arctic LTER, Toolik Lake, Alaska.1995.
Above ground plant biomass and leaf area were measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61, 1991 pp.1-31).
Plant biomass, leaf area, carbon, nitrogen, and phosphorus in wet sedge tundra, 1994, Arctic LTER, Toolik Lake, Alaska.
Plant biomass, leaf area, carbon, nitrogen, and phosphorus were measured in three wet sedge tundra experimental sites. Treatments at each site included factorial NxP and at the Toolik sites greenhouse and shade house. Treatments started in 1985 (Sag site) and in 1988 (Toolik sites).
Early July plant biomass in mesic acidic tussock tundra, 1993, Arctic LTER, Toolik Lake, Alaska.
Quadrats (20cm x 20cm squares) along a line (block) were collected for plant biomass in mesic acidic tussock tundra. Each quadrat was separated into individual species, new and old aboveground and belowground biomass. The harvest occurred in early July to coincide with a 15N plant and soil harvest.
June and August plant biomass in mesic acidic tussock tundra, 1992, Arctic LTER, Toolik Lake, Alaska.
Quadrats (20cm x 20cm squares) along a line (block) were collected for plant biomass in mesic tussock tundra. In the lab each quadrat was separated into individual species, new and old aboveground and belowground biomass. Two harvests were completed, June and a late July. These are control plots from an experiment setup for a 15N experiment.
Above ground biomass in acidic tussock tundra experimental site, 1989, Arctic LTER, Toolik, Alaska.
Above ground plant biomass was measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file contains the biomass numbers for each harvested quadrat.
Arctic LTER 1988: del 13C and del 15N ratios measurement for Eriophorum, Carex and lichen species in water tracks at Toolik and Imnavait Creek
del 13C and del 15N ratios were measured for plant and lichen in watertracks in the Toolik Lake drainage and the east facing slope of the Imnavait Creek area. Sampling locations for each species for a specific date were chosen across an elevation gradient starting from the lakeside and leading to ridge crest. The vegetation was dried and analyzed for stable isotopes.
Above ground plant biomass a moist acidic tussock tundra experimental site, 1984, Acric LTER, Toolik Lake, Alaska.
Above ground plant biomass was measured in a tussock tundra experimental site. The plots were set up in 1981 and have been harvested in previous years (See Shaver and Chapin Ecological Monographs, 61(1), 1991 pp.1-31.) This file is the July 26-27, 1984 harvest of the controls and nitrogen + phosphorus treatments.
Seasonal plant biomass moist acidic tussock tundra, 1983, Arctic LTER, Toolik Lake, Alaska.
Biomass in tussock tundra experimental plots near Toolik Lake, North Slope, AK (68 degrees 38N, 149derees 34W). There were five harvests in 1983. This file is the May 21-22, 1983 harvest.
Biomass in wet sedge tundra near the Atigun River crossing of the Dalton Highway, North Slope AK, 1982.
Biomass in wet sedge tundra near the Atigun River crossing of the Dalton Highway, North Slope AK. .There were three harvests; Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61, 1991 pp.1-31.
Arctic LTER 1982: Biomass in tussock tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W).
Biomass in tussock tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). There were three harvests;Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Biomass in heath tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W), 1982.
Biomass in heath tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). .There were three harvests;Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Biomass in shrub tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W),1982.
Biomass in shrub tundra near Toolik Lake North Slope AK (68 degrees 38N, 149derees 34W). There were three harvests; Late May-early June; Late July-early August; Late August-early September. See Shaver and Chapin (Ecological Monographs, 61(1), 1991 pp.1-31.
Thermokarst Lakes
Title Abstract
Chemistry from thermokarst impacted soils, lakes, and streams near Toolik Lake Alaska, 2008-2011.
This file contains data collected from thermokarst impacted soils, lakes, and streams near Toolik Lake Alaska. Data are also presented for experimental manipulations of water (e.g., time course experiments). Sample descriptors include a unique sortchem #, site, date, time, depth, distance, elevation, treatment, date-time, category, and water type (e.g., lake, surface, soil). Physical/chemical measures collected in the field include temperature, conductivity, and pH. Chemical analyses... more
Landscape Interactions Chemistry
Title Abstract
Biogeochemistry data set for soil waters, streams, and lakes near Toolik on the North Slope of Alaska, 2011.
Data file describing the biogeochemistry of samples collected at various sites near Toolik Lake, North Slope of Alaska. Sample site descriptors include a unique assigned number (sortchem), site, date, time, depth, distance (downstream), elevation, treatment, date-time, category, and water type (lake, surface, soil). Physical measures collected in the field include temperature (water, soil, well water), conductivity, pH, average thaw depth, well height, discharge, stage height, and light (... more
Biogeochemistry data set for soil waters, streams, and lakes near Toolik on the North Slope of Alaska.
Data file describing the biogeochemistry of samples collected at various sites near Toolik Lake, North Slope of Alaska. Sample site descriptors include a unique assigned number (sortchem), site, date, time, depth, distance (downstream), elevation, treatment, date-time, category, and water type (lake, surface, soil). Physical measures collected in the field include temperature (water, soil, well water), conductivity, pH, average thaw depth, well height, discharge, stage height, and light (... more
Streams Chemistry
Title Abstract
Arctic LTER Streams Chemistry Toolik Field Station, Alaska 1983 to Present.
Since 1983, the Streams Project at the Toolik Field Station has monitored physical, chemical, and biological parameters in a 5-km, fourth-order reach of the Kuparuk River near its intersection with the Dalton Highway and the Trans-Alaska Pipeline. In 1989, similar studies were begun on a 3.5-km, third-order reach of a second stream, Oksrukuyik Creek.

In each river, physical conditions (such as discharge and temperature), nutrient levels, primary production, insects, and fishes are... more
lakes chemistry
Title Abstract
Water chemistry data for various lakes near Toolik Research Station, Arctic LTER. Summer 2010 to 2014.
Decadal file describing the water chemistry in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 2010 to 2014. Chemical analyses were conducted on samples from various depths in the sample lakes either once, or multiple times during the spring, summer and fall months (May to September). Chemical analyses for the samples include alkalinity, dissolved organic and inorganic carbon (DIC/DOC), inorganic and total dissolved nutrients (NH4, PO4, NO3, TDN... more
Water chemistry data for various lakes near Toolik Research Station, Arctic LTER. Summer 2000 to 2009.
Decadal file describing the water chemistry in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 2000 to 2009. Chemical analyses were conducted on samples from various depths in the sample lakes either once, or multiple times during the spring, summer and fall months (May to September). Chemical analyses for the samples include alkalinity, dissolved organic and inorganic carbon (DIC/DOC), inorganic and total dissolved nutrients (NH4, PO4, NO3, TDN, TDP),... more
Water chemistry data for various lakes near Toolik Research Station, Arctic LTER. Summer 1990 to 1999.
Decadal file describing the water chemistry in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1990 to 1999. Chemical analyses were conducted on samples from various depths in the sample lakes either once, or multiple times during the spring, summer and fall months (May to September). Chemical analyses for the samples include alkalinity, dissolved organic and inorganic carbon (DIC/DOC), inorganic and total dissolved nutrients (NH4, PO4, NO3, TDN, TDP),... more
Water chemistry data for various lakes near Toolik Research Station, Arctic LTER. Summer 1983 to 1989.
Decadal file describing the water chemistry in various lakes near Toolik Research Station (68 38'N, 149 36'W) during summers from 1983 to 1989. Chemical analyses were conducted on samples from various depths in the sample lakes either once, or multiple times during the spring, summer and fall months (May to September). Chemical analyses for the samples include alkalinity, dissolved organic and inorganic carbon (DIC/DOC), inorganic and total dissolved nutrients (NH4, PO4, NO3, TDN, TDP),... more
Thermokarst Streams
Title Abstract
ARCSS/TK water chemistry and total suspended sediment data from I-Minus2 and Toolik River thermokarsts and receiving streams, near Toolik Field Station, Alaska, summers 2006-2013.
Water samples were taken at 5 locations at both I-Minus2 and Toolik River thermokarst sites (10 sampling locations total). A combination of ISCO and manual grab samples were taken depending on the sampling location and year.
ARCSS/TK water chemistry and epilithon characterization from the Noatak National Preserve, Kelly River region (2010) and Feniak Lake region (2011).
These data are from two remote field campaigns in the Noatak National Preserve. Various thermokarst features and their receiving streams were sampled and characterized. A suite of water chemistry (nutrients, major anions and cations, total suspended sediment) and benthic variables (particulate carbon, nitrogen and phosphorus, and chlorophyll-a) were measured at 6 major sites (2 in 2010 and 4 in 2011). There were additional sites sampled for water chemistry above and below thermokarst... more
Lakes Isotopes
Title Abstract
Concentration of dissolved inorganic carbon (DIC), carbon and nitrogen concentrations, C:N ratios and del 13C isotope value for lakes and rivers on North Slope from Brooks Range to Prudhoe Bay, Arctic LTER 1988 to 2005
Composite file describing plant, animal, water, and sediment samples collected at various sites near Toolik Research Station (68 38'N, 149 36'W). Sample site descriptors include an assigned number specific to the file, a number that relates the samples to other samples collected on the same date and time (sortchem), site, date, time, and depth. Samples are identified by type, category, and a short description. Data include isotope values, carbon and nitrogen concentrations, and C... more
Lakes Physical and Chemical Parameters
Title Abstract
Sedimentation rate, concentration of macronutrients and flux for NE14, Toolik, Dimple, Perched during Summer 2009.
We measured the flux of bulk material and major macronutrients (carbon, nitrogen and phosphorus) from the water column to the benthos in four separate lakes during the summer of 2009. The lakes were chosen to investigate the impacts of disturbance on lake sedimentation. Two of the lakes, Dimple and Perched, were within catchments that were burned by the 2007 Anaktuvuk River wildfire. Two of the lakes, NE-14 and Perched, were receiving elevated sediment loads from thermokarst failures on... more
Average Epilimnetic Conductivity from 1992 to present in Tooli Lake, Arctic LTER, Alaska.
Average conductivity of the epilimnion (0-3m of water depth) found in Toolik Lake during the month of July.
Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 1990 to 1999
Decadal file describing the physical/chemical values recorded at various lakes near Toolik Research Station during summers from 1990 to 1999. Sample site descriptors include site, date, time, depth. Depth profiles of physical measures collected in situ with Hydrolab Datasonde in the field include temperature, conductivity, pH, dissolved oxygen in both percent saturation and mg/l, SCUFA chlorophyll-a values in both volts and µg/l, and PAR.
Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 1983 to 1989.
Decadal file describing the physical lake parameters recorded at various lakes near Toolik Research Station during summers from 1983 to 1989. Depth profiles at the sites of physical measures were collected in situ. Values measured included temperature, conductivity, pH, dissolved oxygen, Chlorophyll A, Secchi disk depth and PAR. Note that some sample depths also have additional parameters measured and available in separate files for water chemistry and primary production.
Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 2000 to 2009
Decadal file describing the physical/chemical values recorded at various lakes near Toolik Research Station during summers from 2000 to 2009. Sample site descriptors include site, date, time, depth. Depth profiles of physical measures collected in situ with Hydrolab Datasonde in the field include temperature, conductivity, pH, dissolved oxygen in both percent saturation and mg/l, SCUFA chlorophyll-a values in both volts and µg/l, and PAR.
Physical and chemical data for various lakes near Toolik Research Station, Arctic LTER. Summer 2010 to 2014
Decadal file describing the physical/chemical values recorded at various lakes near Toolik Research Station. Sample site descriptors include site, date, time, depth. Depth profiles of physical measures collected in situ with Hydrolab Datasonde in the field include temperature, conductivity, pH, dissolved oxygen in both percent saturation and mg/l, SCUFA chlorophyll-a values in both volts and µg/l, and PAR.
Terrestrial Precipitation Chemistry
Title Abstract
Bulk precipitation collected during summer months on a per rain event basis at Toolik Field Station, North Slope of Alaska, Arctic LTER 1988 to 2007.
Bulk precipitation was collected during summer months (June, July and August) on a per rain event basis at the University of Alaska Fairbanks Toolik Field Station, North Slope of Alaska (68 degrees 37' 42"N, 149 degrees 35' 46"W). Analysis of pH, NH4-N and phosphorus were performed at the field station. NO3-N were frozen and analyzed in Woods Hole, MA
Inorganic Nitrogen and phosphorus were analyzed on snow samples taken from two snow pits near the long-term acrtic LTER mesic acidic tussock experimental plots Toolik Field Station 2003
Inorganic Nitrogen and phosphorus were analyzed on snow samples taken from two snow pits near the long-term acrtic LTER mesic acidic tussock experimental plots. The snow layers in each pit were described and sampled separtely with the help of Matthrew Sturm.
Precipitation cations and anions for June, July and August from a wet/dry precipitation, University of Alaska Fairbanks Toolik Field Station, North Slope of Alaska (68 degrees 37' 42"N, 149 degrees 35' 46"W), Arctic LTER 1989 to 2003
Precipitation, collected from a wet/dry precipitation collector located near University of Alaska Fairbanks Toolik Field Station, North Slope of Alaska (68 degrees 37' 42"N, 149 degrees 35' 46"W) was sent out for standardized EPA rain water analysis. Nutrient chemistry was also run on a sub sample at the field station.
Terrestrial Soil Properties
Title Abstract
Multiple biogeochemical variables were measured for organic and mineral soils on Arctic LTER experimental plots in moist acidic and non-acidic tundra, Arctic LTER Toolik Field Station, Alaska 2013.
Measures of soil nutrient content (available N and P, Extractable N and P, Total C, N and P), and microbial biomass and activity (exoenzyme activity) were measured for organic and mineral soils on Arctic LTER experimental plots at Toolik field station in moist acidic and non-acidic tundra (organic soils only). 
Net nitrogen mineralization from shrub gradient and snow manipulations, near Toolik field station, collect in the summer of 2006 and winter of 2006-2007
In arctic tundra, near Toolik Lake, Alaska, we quantified net N-mineralization rates under ambient and manipulated snow treatments at three different plant communities that varied in abundance and height of deciduous shrubs. Our objective was twofold: 1) to test whether the amount of snow that accumulates around arctic deciduous shrubs maintains winter soil temperatures high enough to stimulate microbial activity and increase soil N levels (effect of soil microclimate) and 2) to compare... more
Nitrogen mineralization was determined on Arctic LTERToolik and Sag River tussock tundra using the buried bag method, Toolik Field Station, Alaska, Arctic LTER 1989-2013.
Nitrogen mineralization was determined on LTER and Sag River tussock tundra using the buried bag method. Yearly bags have been deployed every August since 1990.
Pool size and 15N atom % of nydrolyzable N in natural and enriched soils in Imnavait watershed
Hydrolyzable N pool size and 15N atom % of natural and enriched soils collected from Imnavait watershed in summer of 2005.
physical and chemical information for soil cores from Imnavait watershed during 2003-2005
Physical (bulk density, soil thickness) and chemical (total C and N, d13C and d15N) information of soil cores taken from 15N addition plots in Imnavait watershed.
Chloroform-extractableN and d15N within 15N addition plots for Aug 2003
Pool size and d15N values for chloroform-extractable N, extractable-N, and non-extractable N pools. Samples collected in Aug. 2003 from 1st Organic Layer of 15N addition plots in Imnavait watershed.

1st Organic Layer = the upper 10 cm of organic soil or, if the organic layer was < 10 cm thick, the entire layer (e.g., there was never > 4 cm of organic soil at Crest).
Plant available NH4, NO3, and PO4 was determined at sites near ARC LTER Toolik acidic tundra and at a toposequence along the floodplain of the Sagavanirktuk River using 2 N KCL and weak HCL extracts, Arctic LTER 1987 to 2002
Plant available NH4, NO3, and PO4 was determined at sites near ARC LTER Toolik acidic tundra and at a toposequence along the floodplain of the Sagavanirktuk River using 2 N KCL and weak HCL extracts. This file complies data collected at different times from 1987 through 2001 and includes initial extracts taken for buried bag method of net nitrogen mineralization.
Total soil cations (Al, Ca, K, Mg, Na, P) for intertussock O and B horizon soils on moist acidic and non-acidic tundra, Arctic LTER 1997.
Total soil cations (Al, Ca, K, Mg, Na, P) for intertussock O and B horizon soils on moist acidic and non-acidic tundra.
Extractable soil cations (K, Ca, Mg, Na) for intertussock O and B horizon soils on moist acidic and non-acidic tundra, Arctic LTER 1997.
Extractable soil cations (K, Ca, Mg, Na) for intertussock O and B horizon soils on moist acidic and non-acidic tundra.
Plant available NH4, NO3, and PO4 was determined at three site (LTER Toolik acidic and nonacidic tundra and Sagwon acidic tundra) and three community combinations (tussock, watertrack, and snowbed) Arctic LTER 1997.
Plant available NH4, NO3, and PO4 was determined at three site (LTER Toolik acidic tundra, LTER Toolik nonacidic tundra, and Sagwon acidic tundra) and three community combinations (tussock, watertrack, and snowbed), three times during the season. pH was also determined in July and strong acid phosphorous in August.
Carbon, nitrogen and phosphorus content in the seasonally thawed soils are described for four arctic tundra vegetation types located near the Toolik Field Station, Arctic LTER 1993.
Carbon, nitrogen and phosphorus content in thawed soils are described for four arctic tundra vegetation types located near the Toolik Field Station.
Arctic LTER 1991: Percent moisture, bulk density, percent loss on ignition and percent organic carbon were measured for peat collected from soils in the Imnavait Creek watershed.
Percent moisture, bulk density, percent loss on ignition and percent organic carbon were measured for peat collected from soils in the Imnavait Creek watershed.
Extractable NH4-N and NO3-N (2 N KCl), PO4-P (0.025 N HCl) and pH (0.01 M CaCl2) were measured on soils from a transect along the Dalton road, Arctic LTER 1991.
Extractable NH4-N and NO3-N (2 N KCl), PO4-P

(0.025 N HCl) and pH (0.01 M CaCl2) were measured on soils from a

transect along the Dalton road. Sites are Gus Shaver flowering sites and

Arctic LTER sites.
Terrestrial Trace Gases
Title Abstract
Percent carbon and nitrogen of leaves from shoots harvested at three levels in the canopy from 19 plots dominated by S. pulchra and B. nana shrubs near LTER Shrub plots at Toolik Field Station, AK the summer of 2012.
The percent carbon and nitrogen from leaves of shoots harvested from 1m x 1m point frame plots the summer of 2012 at Toolik Lake, Alaska. were measured on a ThermoScientific 2000. For each point frame plot, six shoots were harvested from upper, middle, and low sections of the canopy. The photosynthetic capacity of each shoot was analyzed with a LiCor 6400 infra-red gas analyzer by being run through a light response and A/Ci curve. The area of the shoot as viewed from the stop of the LiCor... more
Leaf area, biomass, carbon and nitrogen content by species for harvests taken as part of the ITEX flux survey.
Leaf area, biomass, foliar carbon and nitrogen by species for destructive vegetation harvests. Plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; and at various sites in Adventdalen, Svalbard, in Zackenberg valley, Northeast Greenland, and at BEO near Barrow, Alaska. Harvests were taken during the growing seasons 2003 to 2009.
NDVI, leaf area index and total foliar N of harvests taken during the ITEX flux survey
Leaf area, biomass, foliar carbon and nitrogen by species for destructive vegetation harvests. Plots were located in the Toolik Lake LTER fertilization experiment in Alaska; at Imnavait Creek, Alaska; at Paddus, Latnjajaure and the Stepps site near Abisko in northern Sweden; and at various sites in Adventdalen, Svalbard, in Zackenberg valley, Northeast Greenland and at BEO near Barrow, Alaska. Harvests were taken during the growing seasons 2003 to 2009.
Percent C, Percent N and C:N ratio for leaf samples from ITEX flux survey plots for 2003-2004, Toolik Alaska.
Foliar carbon and nitrogen concentrations of the dominant species from within the ITEX flux survey plots 2003-2004. Plots were located in the Toolik Lake LTER moist acidic tussock experiment plots in Alaska; at Imnavait Creek, Alaska.
Terrestrial
Title Abstract
NO3 and NH4 collected by resin bags in 15N addition plots during 2003-2004
Concentrations of NO3 and NH4 and d15N of NO3 and NH4 collected on resin bags from 15N addition plots along hillslope in Imnavait watershed.
water chemistry of Imnavait watershed during 2002-2004
Water chemistry (NO3, NH4, TDN, DON, DOC) from Imnavait watershed along hillslope. Sample waters were either collected by lysimeters, needle with syringe, or extracting soil with water or 1N KCl.
Percent carbon and percent nitrogen of above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra, 2001, Arctic LTER, Toolik Lake, Alaska.
Percent carbon and percent nitrogen were measured from above ground plant and belowground stem biomass samples from experimental plots in moist acidic and moist non-acidic tundra. Biomass data are in 2001lgshttbm.dat.
Subscribe to inorganic nutrients